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Abstract. Unmanned aerial vehicles (UAVs), affordable precise Global Navigation Satellite System hardware, echo sounders, 15 

open-source 3D hydrodynamic modelling software, and freely available satellite data have opened up opportunities for a 

robust, affordable, physics-based approach to monitor river flows. In short, the hardware can be used to produce the geometry. 

3D hydrodynamic modelling offers a framework to establish relationships between river flow and state variables such as width 

and depth, while satellite images with surface water detection methods or altimetry records can be used to operationally monitor 

flows through the established rating curve. Uncertainties in the data acquisition may propagate into uncertainties in the 20 

relationships found between discharge and state variables. Variations in acquired geometry emanate from the different ground 

control point (GCP) densities and distributions which are used during photogrammetry-based terrain reconstruction. In this 

study, we develop a rating curve using affordable data collection methods and basic principles of physics. The specific 

objectives were to: determine how the rating curve based on a 3D hydraulic model compares with conventional methods; 

investigate the impact of geometry uncertainty on estimated discharge when applied in a hydraulic model; and investigate how 25 

uncertainties in continuous observations of depth and width from satellite platforms propagate into uncertainties in river flow 

estimates using the rating curves obtained. The study shows comparable results between the 3D and traditional river rating 

discharge estimations. The rating curve derived on the basis of 3D hydraulic modelling was within a 95 % confidence interval 

of the traditional gauging based rating curve. The physics-based estimation requires determination of the roughness coefficient 

within the permanent bed and the floodplain using field observation as both the end of dry and wet season. Furthermore, the 30 

study demonstrates that variations in the density of GCPs beyond an optimal number (9) has no significant influence on the 

resultant rating relationships. Finally, the study observes that it depends on the magnitude of the flow which state variable 

approximation (water level & river width) is most promising to use. Combining stage appropriate proxies (water level when 
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the floodplain is entirely filled, and width when the floodplain is filling) in data limited environments yields more accurate 

discharge estimations. The study was able to successfully apply low cost technologies for accurate river monitoring through 35 

bhydraulic modelling. In future studies, a larger amount of in-situ gauge readings may be considered so as to optimise the 

validation process.  

 

Key words: Unmanned Aerial Vehicle (UAV), discharge estimation, river Bathymetry, hydraulic modelling 

 40 

1 Introduction 

Advancements in technology have led to new opportunities in river monitoring for dam operators, water resource authorities, 

environmental agencies and scientists with limited financial capacities (Rafik and Ibrekk, 2001). Hydraulic models play an 

important part in river monitoring procedures. However, several different data inputs are required in order to calibrate, validate 

and implement hydraulic models. One of the most sensitive of these data inputs is the geometry and bathymetry of a river (Dey 45 

et al., 2019). The geometry is usually described in the form of Digital Elevation Models (DEMs). 

DEMs can be generated from a wide range of methods ranging from traditional ground surveying to remote sensing techniques 

applied to space- or air-borne imagery. Airborne-based Light Detection and Ranging (LiDAR) systems are capable of 

producing highly accurate DEMs (Liu et al., 2008). However, the data has limited spatial coverage and is expensive to acquire 

and process. In most cases, traditional ground surveying techniques are laborious, time inefficient, and potentially dangerous 50 

for personnel collecting the data (Samboko et al., 2019). 

Space-borne methods provide a non-contact, thus safer, alternative for surveying river terrains. The most common satellite-

based topography data sources are the Shuttle Radar Topography Mission (SRTM) DEM and the Advanced Space-borne 

Thermal Emission and Reflection Radiometer (ASTER) DEM. Unfortunately, there is a significant trade off which needs to 

be taken into account when applying satellite data for the purposes of river monitoring. Most freely available satellite-based 55 

terrain data sources such as ASTER (15m) and SRTM (30m) do not satisfy the required combination of spatial and temporal 

resolution necessary for accurate river monitoring. Consequently, while satellite data is promising for larger rivers, their spatial 

and temporal resolution is not appropriate for small to medium rivers (Kim, 2006). 

It is within this technological gap that Unmanned Aerial Vehicles (UAVs) platforms equipped with cameras, continue to be 

developed and applied due to their relatively low cost, high resolution and efficient application processes. The UAV collects 60 

overlapping images which are geotagged and subsequently merged together using photogrammetry (Skondras et al., 2022). 

The photogrammetric process in turn produces a number of outputs which include a digital elevation model (DEM). However, 

in order to reconstruct accurate geometries, the photogrammetry process requires Ground Control Points (GCPs) to identify 

the precise location of matter in the visible domain (Smith et al., 2015). 
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The process of applying GCPs is laborious and time consuming, therefore it is important to minimise the number of GCPs 65 

collected without significant compromise on accuracy (Martínez-Carricondo et al., 2018; Smith et al., 2015; Woodget et al., 

2017). Several studies have been conducted in order to determine the optimal number of GCPs necessary for accurate geometry 

reconstruction (Awasthi et al., 2019; Coveney and Roberts, 2017; Ferrer-González et al., 2020). Very few studies however, 

have investigated the impact of uncertainties in geometry on the estimated flow when applied in a 3 D hydraulic model. One 

such study conducted by Samboko et al. (2022), investigated the impact of variations in the number of GCPs on the hydraulic 70 

conveyance. The study concluded that nine GCPs spread out across 25 hectares to optimally represent the full spectrum of 

elevation variations is sufficient for accurate conveyance estimation. However, the conveyance is a proxy of actual flow and 

may not be fully indicative of the actual discharge. Therein lies this research study gap, which seeks to develop a more physics-

based rating curve using a combination of low-cost data collection equipment and 3D hydraulic modelling. We assess the 

robustness of the method by determining how inaccuracies in the geometry caused by varying GCP numbers, ultimately 75 

propagate into stage-discharge relationships. Furthermore, the study investigates how uncertainties in proxies of flow that may 

be derived from satellite platforms, such as river width (through surface water detection) or water level (from e.g. altimetry 

missions) propagate into uncertainties in discharge estimation. 

The following research questions are investigated to determine whether the mentioned factors have a significant effect on the 

accuracy of results.  80 

How does the rating curve produced by a 3 D hydraulic model compare with conventional methods? 

How do uncertainties in the surveyed geometry propagate into estimated discharge when applied in a 3D hydraulic model? 

How do uncertainties in proxies of flows from satellite data propagate into uncertainties in discharge estimation? 

 

 85 

2 Material and Methods 

 

In brief, the experiment consist of the following steps: select a suitable study site as far away as possible from impediments 

which may cause backwater effects and with a relatively straight river profile, use a combination of the UAV, RTK-GNSS, 

and ADCP to determine the wet /dry bathymetry and slope, merge the dry and wet bathymetries and subject the merged 90 

bathymetry to boundary conditions within a 3D hydraulic modelling environment, determine the roughness coefficient and run 

the hydraulic model a number of times until a relationship between flow and stage (rating curve) can be determined, compare 

the rating curve with traditional rating curves then repeat this experiment using varying bathymetries and compare the outputs 

to determine if there is a significant difference in the results. Figure 1 presents a schematic of the experiments conducted in 

this study.  95 
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2.1 Data collection methods 

 

A detailed description of how the dry and wet river bathymetry can be collected using low-cost UAV and GNSS device is 

introduced in section 2 of a study in Samboko et al. (2022). In short, the method consists of the following steps: an airborne 100 

instrument (e.g. UAV) is used to collect overlapping and geotagged images which are in turn converted into dry bathymetry 

through photogrammetry. Ground control points measured using low cost RTK GNSS equipment are used to rectify 

inaccuracies in the bathymetry. The wet bathymetry is measured using a combination of an RTK GNSS and an echo sounding 

instrument (e.g. fish finder).  The waterline is then measured using the RTK GNSS so as to correct any doming effect which 

may be caused by uncertainties in correcting radial lens distortions. Finally, the wet and dry bathymetries are merged through 105 

linear interpolation to form a seamless full bathymetry.  

 

2.2 Study Site 

The study was conducted in Southern Zambia along the Luangwa River, downstream of the Luangwa Bridge. The Basin has 

a catchment area of approximately 160,000 km2. The Luangwa River originates in the Mafinga Hills in the North-Eastern part 110 

of Zambia and is approximately 850 km in length, flowing in South-Western direction (The World Bank, 2010). The river 

drains into the Zambezi River, shaping a broad valley along its course, which is well-known for its abundant wildlife and 

relatively pristine surroundings (WARMA, 2016). The study area is approximately 25 hectares. 

For purposes of comparison, the specific location of the study site is only a few kilometres from the Zambia Water Resources 

Management Authority (WARMA) permanent gauging station and a couple of hundred metres from the site where a similar 115 

study based on a 1D Hydrologic Engineering Center - River Analysis System (HEC-RAS) model (Abas et al., 2019). These 

sites may be considered similar in their hydraulic conveyance properties, given that they are geographically close to each other 

and their geomorphological characteristics are similar. A dataset of discharge and stage measurements, taken by WARMA 

between 1948 and 2002 is available for rating curve comparison. We surveyed the flow and water level twice, at the end of 

the rainy season and at the end of the dry season so as to capture both low (only permanent channel) and intermediate (also 120 

partly floodplain) flow conditions. Figure 2a shows the location of the study site within the Luangwa Basin. Figure 2b shows 

the location of the study site in relation to the 2 other sites. 

 

 

 125 
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2.3 Hydraulic Modelling 

For hydraulic simulation, we used D-Flow Flexible Mesh (D3DFM) (Deltares, 2020). D3DFM solves the nonlinear shallow 

water equations in 1D, 2D or 3D or combinations thereof using a flexible mesh domain. Within D3DFM two different layering 

methods are provided for 3D models, the sigma (𝜎) method and the Z-method. The Z-method is based on the Cartesian Z-130 

coordinate system resulting in straight horizontal coordinate lines. Layers in the 𝜎-model increase or decrease in thickness as 

the water depth in the model increases or decreases. The relative thickness distribution of the different layers however remains 

fixed (Deltares, 2020). Figure 3 shows how the sigma layers and Z layers differ spatially in thickness. 

  

 135 

A hydraulic model consisting of a bed level, a grid structure, mathematical formulations describing the physical processes and 

corresponding necessary assumptions and approximations requires boundary conditions to simulate the desired hydraulic 

processes. In case of a river model these boundary conditions do often comprise an inflow and outflow of water implied by a 

discharge, velocity or water level. In D3DFM models these boundary conditions can be imposed as a time series or as a 

harmonic signal. 140 

Besides the boundary conditions, there are initial conditions and physical parameter values to be assigned to the model, for 

example initial water levels, the water temperature and a uniform friction coefficient. This friction coefficient influences the 

maximum velocity of the water at the river bed and therefore affects the discharge capacity and water level in the simulation 

(Saleh et al., 2013). The roughness can be described by different formulations like Chézy, Manning or White-Colebrook which 

all contain a certain roughness coefficient that needs to be specified. For the purpose of this study, the Manning coefficient is 145 

chosen as it is more applicable to open channels (Zidan, 2015). 

 

2.4 Description of Data Requirements for D3DFM  

Model setup and evaluation needed the bathymetry, boundary conditions (discharge and water level) and the roughness 

coefficient.  150 

 

Bathymetry data requirements 

The bathymetry of the terrain is established through merging and volumisation of photogrammetric data with sonar 

measurements. In brief, the Digital Terrain Model (dry bathymetry) is merged with river transects (wet bathymetry) and 

subsequently volumised into a complete seamless bathymetry through linear interpolation. More details on this method can be 155 

found in Samboko et al., (2022).  

The seamless bathymetry is then cut perpendicular to the flow direction on both sides in preparation for input into D3DFM. 

Figure 4 shows an example of a DEM which has been volumised and subsequently cut on both sides.  
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 160 

 

In order to use the point cloud in a model, the area should be extended both downstream and upstream. The extensions is 

required to ensure that upstream water can numerically spread over the entire width realistically, and downstream to ensure 

that the imposed downstream boundary does not affect the water levels and velocities in the area of interest. A small selection 

of 1200 coordinates over the complete width on each side is taken. This small stretch is reproduced every 36 meters in the 165 

direction of flow (or opposite for the extension to the north), this means the longitudinal and latitudinal values are shifted 

slightly and the height is subtracted or added with the corresponding slope. The point cloud is extended both upstream and 

downstream with 118 stretches, corresponding to 4248 meters, which is significantly more than the adaptation length (2.1 km). 

The adaptation length is the distance required to counter the effects of backwater. After volumising the model for the last time, 

the final result is a point cloud containing 4.76 ×109 coordinates representing approximately 9.2 km of the Luangwa River. 170 

Figure 5 shows the elongated bathymetry which is imported into D3DFM representing the bed level.  

  

 

 

 175 

2.5 D3DFM setup, calibration and evaluation 

The model was setup with two Manning roughness configurations. One based on the main channel using the dry season 

observation set (water level, flow and velocimetry) and another where the degrees of freedom are extended to two roughness 

values (one main channel, one floodplain) using an observation taken during both the wet and dry season observations. This 

is to evaluate whether one visit is sufficient, or whether multiple visits are recommended. 180 

 

In order to determine the optimal roughness coefficient of the main channel in the dry season, we constrained the model 

through optimisation of a combination of surface velocity and water level. The start value for Manning’s friction coefficient 

was set at 0.018 s/m-1/3, the median of the 𝑛 value (Manning) for sandy straight uniform channels which ranges from 0.012 to 

0.026 s/m-1/3(Arcement and Schneider, 1989). The upstream boundary condition which was measured in the field was kept 185 

constant at 191 m3/s. We imported the coordinates of known surface velocities which were measured using Large Scale Particle 

Image Velocimetry (LSPIV) and a current meter. Similarly, coordinates of known water levels which were measured using an 

Acoustic Doppler Current Profiler (ADCP) were imported into the model and compared to the simulated water levels. Note 

that the use of ADCP could be replaced by the use of a more cost efficient sonar, such as a fishfinder device, to keep the 

method entirely affordable. The comparison is based on the Mean Average Deviation (MAD). The score was based on 5 190 

measurements for the current meter and 10 for LSPIV. The simulated water level was similarly assessed with 5 observation 
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points located in the centre of the wet bathymetry. A combination which yields the lowest values of MAD indicates an optimal 

roughness coefficient to proceed with.  

The second model setup incorporated the wet and dry roughness coefficients. On the main channel, we applied the roughness 

which had been calibrated in the dry season. On the floodplain, we applied a roughness coefficient of 0.040 s/m-1/3 which was 195 

derived through a 1 D HEC RAS model in the wet season. A summary of the derivation is describe in Annex 1 

 

After the model was constructed and calibrated, the next step was to accurately predict discharges other than 191 m3/s. 

Establishing a stage-discharge relationship requires rating points (a discharge with corresponding stage) produced by the 

model. Hence, the model was run at least 20 times with changing boundary conditions. The upstream boundary condition was 200 

given by a discharge ranging from 5 to 3000 m3/s and the downstream boundary condition was determined through repetitive 

iterations which estimated the water level based on slope. Finally, both models were compared with a traditional rating curve 

constructed by WARMA. The 95% confidence interval of the WARMA rating curve will be used to generally judge the 

accuracy of the more physically constructed rating curve. Statistical model evaluation tools, Nash–Sutcliffe efficiency (Ens) 

and Percentage bias (Pbias) are also used to determine significant differences among the simulated curves. The selected criteria 205 

are recommended for model evaluation because of their robust performance rating of simulating models.(Moriasi et al., 1983). 

Pbias measures the tendency of the simulated data to either under-estimate or over-estimate the observed WARMA readings. 

Low magnitudes indicate optimal model simulation. Ens indicates how well the plot of observed versus simulated data fits the 

1:1 line. NSE and PBIAS are computed as shown in equation 1 and equation 2.   

 210 

𝐸𝑛𝑠 = 1 − [
∑ (𝑂𝑖 − 𝑃𝑖)2𝑥

𝑖=1

∑ (𝑂𝑖 − 𝑂𝑚𝑒𝑎𝑛)2𝑥
𝑖=1

] 

 

Eq1 

𝑃𝑏𝑖𝑎𝑠 =  
∑ (𝑂𝑖 − 𝑃𝑖)𝑥

𝑖=1

∑ 𝑂𝑖
𝑥
𝑖=1

 

 

Eq2 

 

 

 

 2.6 Comparison of discharge estimations based on varying geometries 

In order to evaluate the impact of the number of GCPs on the estimated discharge, four elevation models reconstructed based 215 

on 5, 9, 13 and 17 GCPs are fed into the D3DFM hydraulic model under similar boundary conditions. The preparation of the 

bathymetries is similar to that which has been described in section 3.2. We inter-compare the different rating curves 
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individually to evaluate if there are any notable differences. Figure 6 shows the varying GCP configurations used in the 

generation of bathymetries. 

 220 

 

 Evaluation of the propagation of continuous width and depth observations on uncertainty of discharge estimation 

The two main proxies of flow that we assessed, and which potentially can be used for continuous monitoring through satellite 

observations, are water level and river width. In preparation to measure river width, we placed a cross section perpendicular 

to river flow where the cross-sectional must cut across the entire flood plain. Figure 7 shows the location and orientation of 225 

the cross section. 

  

Thereafter, the model is run 20 times with varying upstream boundary conditions between 5 and 3000 m3/s. For each simulated 

upstream discharge value, we measured and recorded the width in the simulation. After calculating the average river width we 

established a discharge versus river width relationship (Q-b). With the assumption that our estimated widths could be +/- 5 230 

meters uncertain, or in even more uncertain cases =/-10 meters, we estimated the river flow and its uncertainty through the 

established relationships between flow and depth, and flow and width respectively. This allowed us to assess at which point 

along the full stretch of the floodplain which proxy is more likely to produce accurate discharge estimations. This process was 

repeated with water depth as the proxy.   

 235 

4 Results and discussion 

The impact of photogrammetry-based geometry on the estimated discharge was assessed through three steps: comparing the 

rating curve of the D3DFM model with traditional methods, comparing rating curves based on geometries constructed using 

different GCP numbers in D3DFM, and evaluating how the uncertainty in models based on proxies of flow (width and water 

level) propagate into discharge inaccuracies.  240 

 

4.1. Comparing the Rating Curve of the D3DFM Model with Traditional Methods 

Before the comparison of D3DFM with other models, calibration and validation was performed. The surface flow velocity and 

the water depth were used to calibrate the model whilst model validation was performed based on a visual assessment of the 

RTK tie line and surface velocity. The measured variables are summarised in Table 1.  245 
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Table 1 The experiments used for models’ calibration and validation. 

Phase Data set Description Use 

1 Surface velocity (LSPIV, Current 

meter) and Water Depth (ADCP & 

RTK GNSS) 

Determining the Roughness (n) 

coefficient 

Calibration 

2 RTK tie line and surface velocity Testing the models predictive capacity  Validation 

 

The model setup required calibration of the roughness coefficient based on an optimal combination of the simulated water 

surface velocity and water level. The simulated velocities for the different roughness values were compared to the current 250 

meter and LSPIV measurements using the Mean Average Deviation (MAD) and percentage bias. Table 2 provides the MAD 

of both the velocities and the water levels for each applied Manning coefficient (𝑛). Lower values of MAD represent more 

optimal results. 

 

Table 2 Mean Average Deviation for Roughness optimisation 255 

Manning 

coefficient 

[s/m1/3] 

MAD of Current 

metre [m/s] 

[%] MAD of LSPIV 

[m/s] 

[%] MAD of water 

level [m] 

0.012 0.104 8.2 0.097 9.2 0.095 

0.013 0.11 8.7 0.077 7.3 0.067 

0.014 0.124 9.8 0.069 6.7 0.063 

0.015 0.144 11.3 0.067 6.4 0.075 

0.016 0.162 12.8 0.071 6.8 0.099 

0.017 0.176 13.9 0.075 7.1 0.145 

0.018 0.196 15.4 0.085 8.1 0.193 

 

The first model simulation which was set at 0.018 s/m-/13 shows a relatively high average deviation (LSPIV: 15.4 % & CM: 

8.1%) of the surface flow velocity and an overestimation of the water level by 19.3 cm. This results in a substantial widening 

of the river due to the uniform ‘flat’ floodplain. Both the velocity and the water level indicate a better performance when lower 

roughness value are applied since less resistance means faster flowing water and a lower water level with equal discharge. 260 

After further reductions in roughness values, results indicate that velocity and water levels are optimal when the Manning is 

set at either 0.013 s/m1/3 or 0.014 s/m1/3. Since the CM measurements had to be performed from a boat, we expect higher 
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uncertainties in these measurements. Hence, 0.014 s/m1/3 (highlighted in grey in Table1), is selected as the optimal roughness 

coefficient of the main channel  

 265 

The model validation was performed based on a visual analysis of the alignment between the measured RTK tie line and the 

simulated water level. Figure 8 shows the RTK tie line which was measured along the water line and the simulated flow at Q 

= 191 m3/s, n = 0.014 s/m1/3 (main channel) and n = 0.040 s/m1/3 (floodplain). In the absence of varying seasonal gauge readings, 

the alignment between the RTK tie line and the simulated water line on the right bank of the river provides visual evidence of 

good model performance. 270 

 

 

After the model was setup and evaluated, simulations ranging from 5 m3/s to 3,000 m3/s with increments 100 m3/s of were 

performed. Figure 9 presents four rating curves derived from D3DFM; one based on a single channel Manning coefficient 

(derived from dry-season flow survey in the main channel), the second is based on a combination of 2 coefficients (main 275 

channel and floodplain), the third curve shows the rating curve based on a 1D HEC-RAS model and the final curve is based 

on the conventional gauging method from WARMA. The discharge measurements are visualised in relation to a 95% 

confidence interval of the WARMA rating curve. In addition to the confidence interval, we evaluated the significant differences 

among the curves based Ens and Pbias in relation to the WARMA curve. 

  280 

The D3DFM based model which combines two different roughness coefficients more closely resembles the WARMA curve 

than the 1D HEC-RAS curve and the D3DFM which applies only one roughness for the entire terrain. This is particularly the 

case for high flow conditions. This result may be attributed to better optimisation of the roughness coefficients (compared to 

1D or 3D with only one Manning roughness) which acknowledges the fact that roughness in the main channel is different from 

roughness in the floodplain.  It must however be noted that comparing with the relationships of WARMA and 1D HEC-RAS 285 

is only insightful to a certain extent as the experiment was not conducted at the exact same location as where the WARMA 

rating curve is maintained. Possible differences in the river geometry may cause that our results are not entirely equivalent 

with WARMA’s rating curve. The final stage-discharge relationship is expressed by figure 10 and equation 3. This relationship 

should function as a basis on which adjustments can be made based on newly available stage-discharge data. Note that the 

river geometry will most likely change over time, due to the sandy bed-level, and therefore the constants are not stable over 290 

time. 

 

𝑄 = 3.42[ℎ − ℎ0]3.39                                                     Eq 3 

 

https://doi.org/10.5194/gi-2022-21
Preprint. Discussion started: 14 December 2022
c© Author(s) 2022. CC BY 4.0 License.



11 

 

4.2. Comparison of discharge based on varying GCP numbers. 

To assess the impact of the number of ground control points on the bathymetric chart and therewith on the modelled discharge, 

charts created with different GCP numbers were used to run the same hydraulic model with similar boundary conditions. 295 

Figure 11 presents the rating curves of all four distributions.   

 

Assuming the bathymetry based on 17 GCPs as the control, we plotted a 95% confidence interval on its rating curve. The 

confidence interval was plotted based on OLS regression results. These results are presented in Annex 1. The Pbias and Ens 

results indicate very similar curves derived among bathymetries based on 5, 9, 13 GCPs; PBIAS [3%, 0.7% & 0.6%] and NSE 300 

[0.982, 0.998, & 0.999] respectively. All 4 curves fell within the 95 % confidence interval of the control curve (17 GCPs). It 

must be noted that the bathymetry up until 191m3/s is determined by the ADCP/RTK measurements and therefore the number 

of GCPs does not influence the curve up until this point. In this study, a minimum of 5 GCPs spread over 25 ha is sufficient 

for accurate discharge estimation. We draw a conclusion that for the purposes of physics based river rating, a ratio of 5 ha/GCP 

is sufficient to accurately estimate discharge. However, in all instances including terrains less than 1 ha, the base-305 

level/minimum number of GCPs required is 3 to allow for triangulation (Oniga et al., 2020). Finally, it is important to note 

that the distribution of the GCPs is likely to influence the final chart drastically as the most uncertain areas will be at the 

borders of the bathymetry (mostly due to the bowling effect). Therefore an optimal GCP distribution will not only be 

representative of the full spectrum of elevations, but, priorities placement of GCPs on the edges of the terrain being mapped. 

 310 

 

4.3 The impact of uncertainty in proxies of flow on discharge estimation. 

Finally, we investigated the impact of proxy uncertainties (river width and water level) on discharge estimation. With proxies 

we mean here variables that can be more easily observed operationally. We imposed uncertainty based on the resolution of 

satellite sensors we may rely on such as IceSAT-2 for river depth and Sentinel-1/2 for river width. Figure 12 presents the 315 

relationship between discharge and river width. The graph also highlights 2 different potential error intervals, +/- 5 meters (90 

%) and +/- 10 meters (95 %) so as to visualise the amount of uncertainty which corresponds with specific sections of the 

terrain.  

If river widths would be used, this would results in high levels of flow uncertainty below 150 meters. These higher levels of 

uncertainty are as a result of low width sensitivity to changes in flow below 150 m. The low sensitivity in this low flow stage 320 

can be attributed to the steep bank, i.e. as flow increases the depth rises quickly but there are minimal changes in width. During 

medium level flows, between 150 m. and 370 m., results indicate lower levels of width uncertainty i.e. high river width 

sensitivity.  The high sensitivity in this medium flow stage may be attributed to the gentle sloping floodplain (more stable 

roughness coefficient), i.e., as flow increases the width rises significantly faster than the water level. Finally, higher levels of 
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width uncertainty are noted during high flows (above 370 meters). This region experiences low width sensitivity to changes in 325 

flow. The causal factor is inundation of entire floodplain, which has not been schematized in the hydraulic schematization. 

 

Similar to width, water level uncertainties also result in varying discharge estimates. Figure 13 presents the relationship 

between discharge and water level as simulated by D3DFM. The graph also highlights 2 different potential error intervals, +/- 

10 cm (90 %) and +/- 20 cm (95 %). These error intervals assist us in visualisation of the amount of uncertainty in flow that 330 

can be expected from using water levels as proxy. . For lower flows (<1 000 m3/s), results indicate lower levels of water level 

uncertainty i.e. high water level sensitivity. The justification for the high sensitivity in this low flow stage can be attributed to 

the steep bank, i.e. as flow increases the depth rises quickly but there are minimal changes in width. During medium level 

flows, between 1 000 m3/s and 1 500 m3/s, results indicate higher levels of water uncertainty i.e. low water level width 

sensitivity.  The low sensitivity in this medium flow stage may be attributed to the gentle sloping floodplain, i.e. as flow 335 

changes, the water level does not change significantly. Finally, during high flows the floodplain is inundated with water, thus, 

the expectation is that in this regime high water level sensitivity i.e. low water level uncertainty. Contrary to our expectation, 

this segment experiences high water level uncertainty. This may be because the magnitude larger or because of lateral flow of 

water below thick forest on the left bank and disturbances from unnatural infrastructural development (e.g. the road) on right 

bank maintains high levels of uncertainty. 340 

 

As shown in figure 10 and 11, the proxies of flow (water level and river width), are antagonistic in nature. This implies that 

when one of the proxies exhibits high uncertainty, the other is more likely to presents low levels of uncertainty.  

We note that different proxies of flow, namely water level and river width, perform optimally at different segments. At low 

flows the shape of the wet river channel (steep slope) is more likely to induce high water level sensitivity and low river width 345 

sensitivity to changes in discharge. At higher flow levels the shape of the wet river channel (gentle slope) is more likely to 

induce low water level sensitivity and high river width sensitivity to changes in flow. At even higher flows, ideally, the 

floodplain is inundated and becomes insensitive to river width. In the absence of more accurate discharge estimation methods, 

the water level is once again the more reliable proxy. Above the natural levee, the assumptions of the schematization of the 

D3DFM model no longer hold, and therefore any flows above that level should not be considered reliable. 350 

 

5 Conclusion and Recommendations 

The study reaffirms and provides insight into the potential of applying low-cost and readily available technologies for river 

monitoring. The methods described in the study are well within reach of water authorities with limited resources and are 

particularly useful for small to medium sized rivers in sub-Saharan Africa. The D3DFM discharge model resembles actual 355 
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river in depth, width and location when using a combination of two Manning’s coefficients (0.014 s/m1/3 & 0.040 s/m1/3) and 

a discharge value of 191 m3/s.  

Based on the PBIAS and Ens values, there is no significant difference in estimated discharge for bathymetries reconstructed based 

on 5, 9, 13 and 17 GCPs. 5GCPs are sufficient to simulate a curve which falls within the 95% confidence interval of a WARMA 

curve (control). Therefore, 5 GCPs are adequate for physically based river rating on condition that the GCPs are accurately 360 

measured using an RTK GNSS and are optimally distributed to represent the full spectrum of terrain elevations. 

The slope, which is an important input to the model, must be measured as accurately as possible for the longest possible 

distance along the water line. Ideally, measuring the waterline height at 200 m intervals for a 5 km stretch is sufficient to avoid 

the impact of wave distortions. The impact of backwater distortions is of particular concern for high water levels as opposed 

to low water levels and therefore a longer measuring distance is required in high water level instances. However, the magnitude 365 

of slope has a bearing on the length that is required to reduce the impact of backwater distortions, i.e. in Luangwa’s case, a 

long distance would be needed but for streams with a large bottom slope, a much shorter distance is sufficient.  Furthermore 

the stretch chosen for observation must be long enough to cancel out the effects of sand banks (uneven silt deposition) which 

may have an impact on the slope accuracy. However, identifying and measuring such long stretches is problematic due to 

difficult terrains and inaccuracies caused by the need to move the base station. The most feasible compromise is to use one 370 

base station location and then measure continuously for as far as possible to both sides, use correction via satellites, or use a 

spirit level. In that way the relative accuracy stays the same and will be very good.  

 

We determined that the proxies of flow (water level and river width) perform well at different stages of discharge. For instance, 

at low discharge values and steep banks, the water level is more sensitive to changes in flow, thus more accurate. For higher 375 

discharge values and gentle floodplain slopes where the floodplain fills up, the river width is more sensitive to flow changes 

and thus more appropriate to use. As a result of the two proxies acting antagonistically in performance, a combination of both 

methods in different flow regimes gives a more accurate flow monitoring assessment. Alternatively, determining the river 

geometry and then deciding on which proxy would be most helpful to measure i.e., for gently sloping riverbed using the width 

since a slight change in discharge will have a larger impact on the width and therefore be easier to measure. And vice versa 380 

for steeply sloping river beds (rectangular channel will be only interesting for water level measurements).  

We reiterate that the accurate measurement of a tie line is critical not only to correct the doming effect, but to provide an extra 

validation check for the hydraulic model. In this study we demonstrated that this is feasible and affordable using a simple 

combination of an RTK GNSS and a mobile cart. The tie line must be measured simultaneously with the river discharge so 

that it can be compared against the simulated water line as derived by the hydraulic model.  Finally, we recommend that the 385 

approach is applied in the dry season so as to minimize the amount of water flowing in the river for more efficient 

photogrammetry processing. However, it is important to occasionally measure flows and corresponding water levels at 

different times of the year so as to validate the efficiency of the model simulation and differentiate roughness in the main 

channel and floodplain.  
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A 390 

1 D HEC-RAS model  

 

     In this annex, we describe a preliminary study which was conducted in order to determine the optimal roughness coefficient 

during high flows. The preliminary research was conducted in close proximity to the study currently in question. Both 

study locations have similar geophysical and hydraulic properties, thus, are comparable. The research methodology was 395 

divided in four stages. The first stage was data collection of discharge, bathymetry and aerial data. A DJI phantom 4 

Unmanned Aerial Vehicle (UAV) with a 12 MP camera was used to collect. The second stage was processing of images 

and transects collected using the Unmanned Aerial Vehicle (UAV) and Acoustic Doppler Current Profiler (ADCP) 

respectively. The images were merged together and used to reconstruct the dry topography through photogrammetry. The 

third stage involved hydraulic modelling using the HEC-RAS model. The 1D steady-state hydraulic model was built and 400 

calibrated based on the ADCP measurements. In the final stage, the more physically based rating curve from the hydraulic 

model was compared with a traditional rating curve from the Zambian Water Resources Management Authority 

(WARMA). 

    The model output was evaluated by the Root Mean Squared Error (RMSE). The lowest value for the RMSE is obtained for 

a Manning’s roughness coefficient of n = 0.040 s/m-1/3. According to literature this seems to be a reasonable value. We 405 

proceed to utilise this roughness value in the current study as a representation of the optimal roughness during high flows. 

. 

 

 

 410 
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B 

OLS Regression Results 

 415 

 

 

Annex 1  OLS regression for Control 
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Figure 1 Schematic of experimental procedure 490 
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Figure 2 (a) Study site along Luangwa River (b) location of study site in relation to other comparison sites (Google Maps, 2022). 

 

Figure 3 Representation of (a) Sigma and (b) Z layering methods in D3DFM (Deltares, 2020) 495 

 

Figure 4 DEM which has been volumised and cut on both sides 
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Figure 5 Elongated elevation model imported into D3DFM 

 500 

Figure 6 GCP distribution along floodplain of the Luangwa River 
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Figure 7 Location and orientation of cross-section 

 505 

 

Figure 8 Visual representation of the discharge model at a discharge of 191 m3/s with n = 0.014 s/m1/3 
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Figure 9 Rating curves comparing D3DFM with convetional methods 

 510 

Figure 10 (Logarithm) Discharge vs stage relationship: combined roughness 
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Figure 11 Comparison of Rating curves generated based on varying GCPs 

 

Figure 12 Discharge vs width relationship 515 
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Figure 13  Discharge vs water level relationship 
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